Quantization in Implementing Systems

e Consider the following system
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e In order to analyze it we would prefer
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Effects of Coefficient Quantization in IR Systems

When the parameters of a rational system are quantized
— The poles and zeros of the system function move
If the system structure of the system is sensitive to
perturbation of coefficients
— The resulting system may no longer be stable
— The resulting system may no longer meet the original specs
We need to do a detailed sensitivity analysis
— Quantize the coefficients and analyze frequency response
— Compare frequency response to original response

We would like to have a general sense of the effect of
quantization



Effects on Roots
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Each root is affected by quantization errors in ALL coefficient

Tightly clustered roots can be significantly effected

— Narrow-bandwidth lowpass or bandpass filters can be very
sensitive to quantization noise

The larger the number of roots in a cluster the more sensitive
it becomes

This is the reason why second order cascade structures are
less sensitive to quantization error than higher order system

— Each second order system is independent from each other



Poles of Quantized Second-Order Sections

e Consider a 2nd order system with complex-conjugate pole pair
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e The pole locations after quantization will be on the grid point
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Coupled-Form Implementation

e Equivalent implementation of

the second order system

e But the quantization grid this

time IS
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Effects of Coefficient Quantization in FIR Systems

No poles to worry about only zeros
Direct form is commonly used for FIR systems

Hiz) = bl

Suppose the coefficients are quantized
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Quantized system is linearly related to the quantization error
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Again quantization noise is higher for clustered zeros
However, most FIR filters have spread zeros



Round-Off Noise in Digital Filters
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Analysis of Quantization Error

e Combine all error terms to single location to get
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Round-Off Noise In a First-Order System

Suppose we want to implement the following stable system
b
H(z)= <1
@)= a
The quantization error noise variance IS
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Noise variance increases as |a| gets closer to the unit circle

As |a] gets closer to 1 we have to use more bits to
compensate for the increasing error

e[n] = e,[n] + ey [n]




Zero-Input Limit Cycles in Fixed-Point Realization of IIR Filters

For stable IIR systems the output will decay to zero when the
iInput becomes zero

A finite-precision implementation, however, may continue to
oscillate indefinitely

Nonlinear behaviour very difficult to analyze so we sill study
by example

Example: Limite Cycle Behavior in First-Order Systems
y|n] = ay[n - 1]+ x|n] e <1

Assume x[n] and y[n-1]  *I#] ]
are implemented by 4 bit
registers
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Example Cont’d

y|n] = ay[n - 1]+ x|n] a <1
e Assume that a=1/2=0.100b and the input is

x[n] = gé‘)[n] _ (0.111b)]n]

e If we calculate the output for values of n
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Example: Limite Cycles due to Overflow

Consider a second-order system realized by
yln] = x[n]+ Q(a,9[n - 1)) + Q(&,9In - 2])

— Where Q() represents two’s complement rounding
— Word length is chosen to be 4 bits

Assume a;,=3/4=0.110b and a,=-3/4=1.010Db
Also assume
9|-1]=3/4=0.110b and 9[-2|=-3/4=1.010b
The output at sample n=0 is
9]0/ = 0.110b x 0.110b +1.010b x 1.010b
= 0.100100b + 0.100100b
After rounding up we get
9|0]=0.101b + 0.101b =1.010b = -3/4
Binary carry overflows into the sign bit changing the sign
When repeated for n=1
ylo]=1.010b +1.010b =0.110 =3/4
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Avoiding Limite Cycles

Desirable to get zero output for zero input: Avoid limit-cycles
Generally adding more bits would avoid overflow

Using double-length accumulators at addition points would
decrease likelihood of limit cycles

Trade-off between limit-cycle avoidance and complexity
FIR systems cannot support zero-input limit cycles
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