
Quantization in Implementing Systems

• Consider the following systemConsider the following system

• A more realistic model would be

• In order to analyze it we would prefer

351M Digital Signal Processing 1



Effects of Coefficient Quantization in IIR Systems

• When the parameters of a rational system are quantizedWhen the parameters of a rational system are quantized
– The poles and zeros of the system function move

• If the system structure of the system is sensitive to 
perturbation of coefficientsperturbation of coefficients
– The resulting system may no longer be stable
– The resulting system may no longer meet the original specs

• We need to do a detailed sensitivity analysis • We need to do a detailed sensitivity analysis 
– Quantize the coefficients and analyze frequency response
– Compare frequency response to original response

• We would like to have a general sense of the effect of • We would like to have a general sense of the effect of 
quantization
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Effects on Roots
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Quantization

• Each root is affected by quantization errors in ALL coefficient
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• Tightly clustered roots can be significantly effected
– Narrow-bandwidth lowpass or bandpass filters can be very 

sensitive to quantization noise

• The larger the number of roots in a cluster the more sensitive 
it becomes

• This is the reason why second order cascade structures are 
less sensitive to quantization error than higher order system
– Each second order system is independent from each other
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Poles of Quantized Second-Order Sections

• Consider a 2nd order system with complex-conjugate pole pairConsider a 2nd order system with complex conjugate pole pair

• The pole locations after quantization will be on the grid point 

3 bit← 3-bits

7-bits →
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Coupled-Form Implementation of Complex-Conjugate Pair

• Equivalent implementation of Equivalent implementation of 
the second order system

B  h  i i  id hi  • But the quantization grid this 
time is
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Effects of Coefficient Quantization in FIR Systems

• No poles to worry about only zerosp y y
• Direct form is commonly used for FIR systems
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• Suppose the coefficients are quantized 
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• Quantized system is linearly related to the quantization error
0n
∑
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• Again quantization noise is higher for clustered zeros
• However  most FIR filters have spread zeros
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Round-Off Noise in Digital Filters

• Difference equations Difference equations 
implemented with 
finite-precision 
arithmetic are non-
linear systems

• Second order direct 
form I system

• Model with 
quantization effect

• Density function y
error terms for 
rounding
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Analysis of Quantization Error

• Combine all error terms to single location to getCombine all error terms to single location to get
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• The variance of e[n] in the general case is 
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• The contribution of e[n] to the output is
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• The variance of the output error term f[n] is
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Round-Off Noise in a First-Order System

• Suppose we want to implement the following stable systemSuppose we want to implement the following stable system

• The quantization error noise variance is
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• The quantization error noise variance is
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• Noise variance increases as |a| gets closer to the unit circle
• As |a| gets closer to 1 we have to use more bits to 

compensate for the increasing error
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Zero-Input Limit Cycles in Fixed-Point Realization of IIR Filters

• For stable IIR systems the output will decay to zero when the For stable IIR systems the output will decay to zero when the 
input becomes zero

• A finite-precision implementation, however, may continue to 
oscillate indefinitelyoscillate indefinitely

• Nonlinear behaviour very difficult to analyze so we sill study 
by example

• Example: Limite Cycle Behavior in First-Order Systems• Example: Limite Cycle Behavior in First Order Systems

A  [ ] d [ 1] 

[ ] [ ] [ ] 1a           nx1nayny <+−=

• Assume x[n] and y[n-1] 
are implemented by 4 bit 
registers 

10



Example Cont’d

[ ] [ ] [ ] 1a           nx1nayny <+−=
• Assume that a=1/2=0.100b and the input is 

[ ] [ ] ( ) [ ]nb111.0n
8
7

nx δ=δ=

• If we calculate the output for values of n

[ ] [ ] ( ) [ ]
8

n y[n] Q(y[n])

0 7/8=0.111b 7/8=0.111b

1 7/16=0.011100b 1/2=0.100b

2 1/4=0.010000b 1/4=0.010b

3 1/8=0 001000b 1/8=0 001b

• A finite input caused an oscilation with period 1

3 1/8=0.001000b 1/8=0.001b

4 1/16=0.00010b 1/8=0.001b
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Example: Limite Cycles due to Overflow

• Consider a second-order system realized byConsider a second order system realized by

– Where Q() represents two’s complement rounding 
– Word length is chosen to be 4 bits

[ ] [ ] [ ]( ) [ ]( )2nŷaQ1nŷaQnxnŷ 21 −+−+=

Word length is chosen to be 4 bits

• Assume a1=3/4=0.110b and a2=-3/4=1.010b
• Also assume 

[ ] [ ] b01014/32ˆ  d  b11004/31ˆ
• The output at sample n=0 is

[ ] [ ] b010.14/32ŷ  and  b110.04/31ŷ =−=−==−

[ ] 1.010b  b010.1  0.110b  b110.00ŷ ×+×=

• After rounding up we get
0.100100b  0.100100b      +=

[ ] -3/41.010b0.101b  0.101b0ŷ ==+=

• Binary carry overflows into the sign bit changing the sign
• When repeated for n=1

[ ] 3/41.010b0.101b  0.101b0y +

[ ] 4/311001 010b  1 010b0ˆ
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Avoiding Limite Cycles

• Desirable to get zero output for zero input: Avoid limit-cyclesDesirable to get zero output for zero input: Avoid limit cycles
• Generally adding more bits would avoid overflow
• Using double-length accumulators at addition points would 

decrease likelihood of limit cycles decrease likelihood of limit cycles 
• Trade-off between limit-cycle avoidance and complexity
• FIR systems cannot support zero-input limit cycles
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